Concurrence of Lorentz-positive maps

نویسنده

  • Roland Hildebrand
چکیده

Let H(d) be the space of complex hermitian matrices of size d×d and let H+(d) ⊂ H(d) be the cone of positive semidefinite matrices. A linear operator Φ : H(d1) → H(d2) is said to be positive if Φ[H+(d1)] ⊂ H+(d2). The concurrence C(Φ; ·) of a positive operator Φ : H(d1) → H(d2) is a real-valued function on the cone H+(d1), defined as the largest convex function which coincides with 2 q σ d2 2 (Φ(ξξ )) on all rank 1 matrices ξξ∗ ∈ H+(d1). Here σ d 2 : H(d) → R denotes the second symmetric function, defined by σ 2(A) = P i<j μiμj , where μ1, . . . , μd are the eigenvalues of A. The concurrence of a bipartite density matrix X is defined as the concurrence C(Φ;X) with Φ being the partial trace. A analogous concept can be considered for Lorentz-positive maps. Let Ln ⊂ R n be the ndimensional Lorentz cone. Then a linear map Υ : R → R is called Lorentz-positive if Υ[Lm] ⊂ Ln. For this class of maps we are able to compute the concurrence explicitly. This allows us to obtain formulae for the concurrence of positive operators having H(2) as input space and consequently of bipartite density matrices of rank 2. Namely, let Φ : H(2) → H(d2) be a positive operator, and let λ1, . . . , λ4 be the generalized eigenvalues of the pencil σ d2 2 (Φ(X)) − λ detX, in decreasing order. Then the concurrence is given by the expression C(Φ;X) = 2 q σ d2 2 (Φ(X))− λ2 detX . As an application, we compute the concurrences of the density matrices of all graphs with 2 edges. Similar results apply for a function which we call I-fidelity, with the second largest generalized eigenvalue λ2 replaced by the smallest generalized eigenvalue λ4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 05 11 06 7 v 1 8 N ov 2 00 5 Maps for Lorentz transformations of spin

Lorentz transformations of spin density matrices for a particle with positive mass and spin 1/2 are described by maps of the kind used in open quantum dynamics. They show how the Lorentz transformations of the spin depend on the momentum. Since the spin and momentum generally are entangled, the maps generally are not completely positive and act in limited domains. States with two momentum value...

متن کامل

An LMI description for the cone of Lorentz-positive maps

Let Ln be the n-dimensional second order cone. A linear map from Rm to Rn is called positive if the image of Lm under this map is contained in Ln. For any pair (n,m) of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality (LMI) that describes this cone. Namely, we show that its dual cone, the cone of Lorentz-Lorentz separable elements, is a section o...

متن کامل

On Rank Two Channels

Based on some identities for the determinant of completely positive maps of rank two, concurrences are calculated or estimated from below.

متن کامل

From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups

‎The Lorentz transformation of order $(m=1,n)$‎, ‎$ninNb$‎, ‎is the well-known ‎Lorentz transformation of special relativity theory‎. ‎It is a transformation of time-space coordinates of the ‎pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and ‎$n$ space dimensions ($n=3$ in physical applications)‎. ‎A Lorentz transformation without rotations is called a {it boost}‎. ‎Commonly‎, ‎the ...

متن کامل

An LMI description for the cone of Lorentz-positive maps II

Let Ln be the n-dimensional second order cone. A linear map from R m to Rn is called positive if the image of Lm under this map is contained in Ln. For any pair (n, m) of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality of size (n−1)(m−1) that describes this cone.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008